Nonnegative Matrix Factorization with Markov-Chained Bases for Modeling Time-Varying Patterns in Music Spectrograms
نویسندگان
چکیده
This paper presents a new sparse representation for polyphonic music signals. The goal is to learn the time-varying spectral patterns of musical instruments, such as attack of the piano or vibrato of the violin in polyphonic music signals without any prior information. We model the spectrogram of music signals under the assumption that they are composed of a limited number of components which are composed of Markov-chained spectral patterns. The proposed model is an extension of nonnegative matrix factorization (NMF). An efficient algorithm is derived based on the auxiliary function method.
منابع مشابه
A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem. At each step of ALS algorithms two convex least square problems should be solved, which causes high com...
متن کاملLayered nonnegative matrix factorization for speech separation
This paper proposes a layered nonnegative matrix factorization (L-NMF) algorithm for speech separation. The standard NMF method extracts parts-based bases out of nonnegative training data and is often used to separate mixed spectrograms. The proposed L-NMF algorithm comprises of several layers of standard NMF blocks. During training, each layer of the L-NMF is initialized separately and then fi...
متن کاملBayesian Nonparametric Matrix Factorization for Recorded Music
Recent research in machine learning has focused on breaking audio spectrograms into separate sources of sound using latent variable decompositions. These methods require that the number of sources be specified in advance, which is not always possible. To address this problem, we develop Gamma Process Nonnegative Matrix Factorization (GaP-NMF), a Bayesian nonparametric approach to decomposing sp...
متن کاملA Hierarchical Bayesian Model of Chords, Pitches, and Spectrograms for Multipitch Analysis
This paper presents a statistical multipitch analyzer that can simultaneously estimate pitches and chords (typical pitch combinations) from music audio signals in an unsupervised manner. A popular approach to multipitch analysis is to perform nonnegative matrix factorization (NMF) for estimating the temporal activations of semitone-level pitches and then execute thresholding for making a pianor...
متن کاملA Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کامل